Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Commun Med (Lond) ; 3(1): 81, 2023 Jun 12.
Article in English | MEDLINE | ID: covidwho-20241045

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is a known complication of COVID-19 and is associated with an increased risk of in-hospital mortality. Unbiased proteomics using biological specimens can lead to improved risk stratification and discover pathophysiological mechanisms. METHODS: Using measurements of ~4000 plasma proteins in two cohorts of patients hospitalized with COVID-19, we discovered and validated markers of COVID-associated AKI (stage 2 or 3) and long-term kidney dysfunction. In the discovery cohort (N = 437), we identified 413 higher plasma abundances of protein targets and 30 lower plasma abundances of protein targets associated with COVID-AKI (adjusted p < 0.05). Of these, 62 proteins were validated in an external cohort (p < 0.05, N = 261). RESULTS: We demonstrate that COVID-AKI is associated with increased markers of tubular injury (NGAL) and myocardial injury. Using estimated glomerular filtration (eGFR) measurements taken after discharge, we also find that 25 of the 62 AKI-associated proteins are significantly associated with decreased post-discharge eGFR (adjusted p < 0.05). Proteins most strongly associated with decreased post-discharge eGFR included desmocollin-2, trefoil factor 3, transmembrane emp24 domain-containing protein 10, and cystatin-C indicating tubular dysfunction and injury. CONCLUSIONS: Using clinical and proteomic data, our results suggest that while both acute and long-term COVID-associated kidney dysfunction are associated with markers of tubular dysfunction, AKI is driven by a largely multifactorial process involving hemodynamic instability and myocardial damage.


Acute kidney injury (AKI) is a sudden, sometimes fatal, episode of kidney failure or damage. It is a known complication of COVID-19, albeit through unclear mechanisms. COVID-19 is also associated with kidney dysfunction in the long term, or chronic kidney disease (CKD). There is a need to better understand which patients with COVID-19 are at risk of AKI or CKD. We measure levels of several thousand proteins in the blood of hospitalized COVID-19 patients. We discover and validate sets of proteins associated with severe AKI and CKD in these patients. The markers identified suggest that kidney injury in COVID-19 patients involves damage to kidney cells that reabsorb fluid from urine and reduced blood flow to the heart, causing damage to heart muscles. Our findings might help clinicians to predict kidney injury in patients with COVID-19, and to understand its mechanisms.

2.
Clin J Am Soc Nephrol ; 16(8): 1158-1168, 2021 08.
Article in English | MEDLINE | ID: covidwho-2254249

ABSTRACT

BACKGROUND AND OBJECTIVES: AKI treated with dialysis initiation is a common complication of coronavirus disease 2019 (COVID-19) among hospitalized patients. However, dialysis supplies and personnel are often limited. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Using data from adult patients hospitalized with COVID-19 from five hospitals from the Mount Sinai Health System who were admitted between March 10 and December 26, 2020, we developed and validated several models (logistic regression, Least Absolute Shrinkage and Selection Operator (LASSO), random forest, and eXtreme GradientBoosting [XGBoost; with and without imputation]) for predicting treatment with dialysis or death at various time horizons (1, 3, 5, and 7 days) after hospital admission. Patients admitted to the Mount Sinai Hospital were used for internal validation, whereas the other hospitals formed part of the external validation cohort. Features included demographics, comorbidities, and laboratory and vital signs within 12 hours of hospital admission. RESULTS: A total of 6093 patients (2442 in training and 3651 in external validation) were included in the final cohort. Of the different modeling approaches used, XGBoost without imputation had the highest area under the receiver operating characteristic (AUROC) curve on internal validation (range of 0.93-0.98) and area under the precision-recall curve (AUPRC; range of 0.78-0.82) for all time points. XGBoost without imputation also had the highest test parameters on external validation (AUROC range of 0.85-0.87, and AUPRC range of 0.27-0.54) across all time windows. XGBoost without imputation outperformed all models with higher precision and recall (mean difference in AUROC of 0.04; mean difference in AUPRC of 0.15). Features of creatinine, BUN, and red cell distribution width were major drivers of the model's prediction. CONCLUSIONS: An XGBoost model without imputation for prediction of a composite outcome of either death or dialysis in patients positive for COVID-19 had the best performance, as compared with standard and other machine learning models. PODCAST: This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2021_07_09_CJN17311120.mp3.


Subject(s)
Acute Kidney Injury/therapy , COVID-19/complications , Machine Learning , Renal Dialysis , SARS-CoV-2 , Acute Kidney Injury/mortality , COVID-19/mortality , Hospitalization , Humans
3.
Nat Med ; 29(1): 236-246, 2023 01.
Article in English | MEDLINE | ID: covidwho-2160251

ABSTRACT

Post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are debilitating, clinically heterogeneous and of unknown molecular etiology. A transcriptome-wide investigation was performed in 165 acutely infected hospitalized individuals who were followed clinically into the post-acute period. Distinct gene expression signatures of post-acute sequelae were already present in whole blood during acute infection, with innate and adaptive immune cells implicated in different symptoms. Two clusters of sequelae exhibited divergent plasma-cell-associated gene expression patterns. In one cluster, sequelae associated with higher expression of immunoglobulin-related genes in an anti-spike antibody titer-dependent manner. In the other, sequelae associated independently of these titers with lower expression of immunoglobulin-related genes, indicating lower non-specific antibody production in individuals with these sequelae. This relationship between lower total immunoglobulins and sequelae was validated in an external cohort. Altogether, multiple etiologies of post-acute sequelae were already detectable during SARS-CoV-2 infection, directly linking these sequelae with the acute host response to the virus and providing early insights into their development.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , SARS-CoV-2 , Antibodies, Viral
4.
Obes Sci Pract ; 8(4): 474-482, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1981949

ABSTRACT

Objectives: Hospitalized patients with severe obesity require adapted hospital management. The aim of this study was to evaluate a machine learning model to predict in-hospital mortality among this population. Methods: Data of unselected consecutive emergency department admissions of hospitalized patients with severe obesity (BMI ≥ 40 kg/m2) was analyzed. Data was retrieved from five hospitals from the Mount Sinai health system, New York. The study time frame was between January 2011 and December 2019. Data was used to train a gradient-boosting machine learning model to identify in-hospital mortality. The model was trained and evaluated based on the data from four hospitals and externally validated on held-out data from the fifth hospital. Results: A total of 14,078 hospital admissions of inpatients with severe obesity were included. The in-hospital mortality rate was 297/14,078 (2.1%). In univariate analysis, albumin (area under the curve [AUC] = 0.77), blood urea nitrogen (AUC = 0.76), acuity level (AUC = 0.73), lactate (AUC = 0.72), and chief complaint (AUC = 0.72) were the best single predictors. For Youden's index, the model had a sensitivity of 0.77 (95% CI: 0.67-0.86) with a false positive rate of 1:9. Conclusion: A machine learning model trained on clinical measures provides proof of concept performance in predicting mortality in patients with severe obesity. This implies that such models may help to adopt specific decision support tools for this population.

5.
BMC Endocr Disord ; 22(1): 13, 2022 Jan 06.
Article in English | MEDLINE | ID: covidwho-1613234

ABSTRACT

BACKGROUND: Research regarding the association between severe obesity and in-hospital mortality is inconsistent. We evaluated the impact of body mass index (BMI) levels on mortality in the medical wards. The analysis was performed separately before and during the COVID-19 pandemic. METHODS: We retrospectively retrieved data of adult patients admitted to the medical wards at the Mount Sinai Health System in New York City. The study was conducted between January 1, 2011, to March 23, 2021. Patients were divided into two sub-cohorts: pre-COVID-19 and during-COVID-19. Patients were then clustered into groups based on BMI ranges. A multivariate logistic regression analysis compared the mortality rate among the BMI groups, before and during the pandemic. RESULTS: Overall, 179,288 patients were admitted to the medical wards and had a recorded BMI measurement. 149,098 were admitted before the COVID-19 pandemic and 30,190 during the pandemic. Pre-pandemic, multivariate analysis showed a "J curve" between BMI and mortality. Severe obesity (BMI > 40) had an aOR of 0.8 (95% CI:0.7-1.0, p = 0.018) compared to the normal BMI group. In contrast, during the pandemic, the analysis showed a "U curve" between BMI and mortality. Severe obesity had an aOR of 1.7 (95% CI:1.3-2.4, p < 0.001) compared to the normal BMI group. CONCLUSIONS: Medical ward patients with severe obesity have a lower risk for mortality compared to patients with normal BMI. However, this does not apply during COVID-19, where obesity was a leading risk factor for mortality in the medical wards. It is important for the internal medicine physician to understand the intricacies of the association between obesity and medical ward mortality.


Subject(s)
Body Mass Index , COVID-19/mortality , Hospital Mortality/trends , Hospitalization/statistics & numerical data , Obesity/physiopathology , SARS-CoV-2/isolation & purification , Aged , COVID-19/epidemiology , COVID-19/pathology , COVID-19/virology , Case-Control Studies , Female , Humans , Male , Middle Aged , New York City/epidemiology , Prognosis , Retrospective Studies , Risk Factors , Survival Rate
6.
J Med Internet Res ; 23(2): e26107, 2021 02 22.
Article in English | MEDLINE | ID: covidwho-1574541

ABSTRACT

BACKGROUND: Changes in autonomic nervous system function, characterized by heart rate variability (HRV), have been associated with infection and observed prior to its clinical identification. OBJECTIVE: We performed an evaluation of HRV collected by a wearable device to identify and predict COVID-19 and its related symptoms. METHODS: Health care workers in the Mount Sinai Health System were prospectively followed in an ongoing observational study using the custom Warrior Watch Study app, which was downloaded to their smartphones. Participants wore an Apple Watch for the duration of the study, measuring HRV throughout the follow-up period. Surveys assessing infection and symptom-related questions were obtained daily. RESULTS: Using a mixed-effect cosinor model, the mean amplitude of the circadian pattern of the standard deviation of the interbeat interval of normal sinus beats (SDNN), an HRV metric, differed between subjects with and without COVID-19 (P=.006). The mean amplitude of this circadian pattern differed between individuals during the 7 days before and the 7 days after a COVID-19 diagnosis compared to this metric during uninfected time periods (P=.01). Significant changes in the mean and amplitude of the circadian pattern of the SDNN was observed between the first day of reporting a COVID-19-related symptom compared to all other symptom-free days (P=.01). CONCLUSIONS: Longitudinally collected HRV metrics from a commonly worn commercial wearable device (Apple Watch) can predict the diagnosis of COVID-19 and identify COVID-19-related symptoms. Prior to the diagnosis of COVID-19 by nasal swab polymerase chain reaction testing, significant changes in HRV were observed, demonstrating the predictive ability of this metric to identify COVID-19 infection.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , COVID-19/physiopathology , Heart Rate/physiology , Wearable Electronic Devices , Adult , COVID-19/virology , Circadian Rhythm/physiology , Female , Health Personnel , Humans , Male , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
8.
Patterns (N Y) ; 2(12): 100389, 2021 Dec 10.
Article in English | MEDLINE | ID: covidwho-1492471

ABSTRACT

Deep learning (DL) models typically require large-scale, balanced training data to be robust, generalizable, and effective in the context of healthcare. This has been a major issue for developing DL models for the coronavirus disease 2019 (COVID-19) pandemic, where data are highly class imbalanced. Conventional approaches in DL use cross-entropy loss (CEL), which often suffers from poor margin classification. We show that contrastive loss (CL) improves the performance of CEL, especially in imbalanced electronic health records (EHR) data for COVID-19 analyses. We use a diverse EHR dataset to predict three outcomes: mortality, intubation, and intensive care unit (ICU) transfer in hospitalized COVID-19 patients over multiple time windows. To compare the performance of CEL and CL, models are tested on the full dataset and a restricted dataset. CL models consistently outperform CEL models, with differences ranging from 0.04 to 0.15 for area under the precision and recall curve (AUPRC) and 0.05 to 0.1 for area under the receiver-operating characteristic curve (AUROC).

10.
BMJ Open Diabetes Res Care ; 9(1)2021 09.
Article in English | MEDLINE | ID: covidwho-1398617

ABSTRACT

INTRODUCTION: People with type 2 diabetes (T2D) have an increased rate of hospitalization and mortality related to COVID-19. To identify ahead of time those who are at risk of developing severe diseases and potentially in need of intensive care, we investigated the independent associations between longitudinal glycated hemoglobin (HbA1c), the impact of common medications (metformin, insulin, ACE inhibitors (ACEIs), angiotensin receptor blockers (ARBs), and corticosteroids) and COVID-19 severity in people with T2D. RESEARCH DESIGN AND METHODS: Retrospective cohort study was conducted using deidentified claims and electronic health record data from the OptumLabs Data Warehouse across the USA between January 2017 and November 2020, including 16 504 individuals with T2D and COVID-19. A univariate model and a multivariate model were applied to evaluate the association between 2 and 3-year HbA1c average, medication use between COVID-19 diagnosis and intensive care unit admission (if applicable), and risk of intensive care related to COVID-19. RESULTS: With covariates adjusted, the HR of longitudinal HbA1c for risk of intensive care was 1.12 (per 1% increase, p<0.001) and 1.48 (comparing group with poor (HbA1c ≥9%) and adequate glycemic control (HbA1c 6%-9%), p<0.001). The use of corticosteroids and the combined use of insulin and metformin were associated with significant reduction of intensive care risk, while ACEIs and ARBs were not associated with reduced risk of intensive care. CONCLUSIONS: Two to three-year longitudinal glycemic level is independently associated with COVID-19-related severity in people with T2D. Here, we present a potential method to use HbA1c history, which presented a stronger association with COVID-19 severity than single-point HbA1c, to identify in advance those more at risk of intensive care due to COVID-19 in the T2D population. The combined use of metformin and insulin and the use of corticosteroids might be significant to prevent patients with T2D from becoming critically ill from COVID-19.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , COVID-19 Testing , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , Humans , Retrospective Studies , SARS-CoV-2
14.
Infection ; 49(5): 989-997, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1252277

ABSTRACT

PURPOSE: Limited mechanical ventilators (MV) during the Coronavirus disease (COVID-19) pandemic have led to the use of non-invasive ventilation (NIV) in hypoxemic patients, which has not been studied well. We aimed to assess the association of NIV versus MV with mortality and morbidity during respiratory intervention among hypoxemic patients admitted with COVID-19. METHODS: We performed a retrospective multi-center cohort study across 5 hospitals during March-April 2020. Outcomes included mortality, severe COVID-19-related symptoms, time to discharge, and final oxygen saturation (SpO2) at the conclusion of the respiratory intervention. Multivariable regression of outcomes was conducted in all hypoxemic participants, 4 subgroups, and propensity-matched analysis. RESULTS: Of 2381 participants with laboratory-confirmed SARS-CoV-2, 688 were included in the study who were hypoxemic upon initiation of respiratory intervention. During the study period, 299 participants died (43%), 163 were admitted to the ICU (24%), and 121 experienced severe COVID-19-related symptoms (18%). Participants on MV had increased mortality than those on NIV (128/154 [83%] versus 171/534 [32%], OR = 30, 95% CI 16-60) with a mean survival of 6 versus 15 days, respectively. The MV group experienced more severe COVID-19-related symptoms [55/154 (36%) versus 66/534 (12%), OR = 4.3, 95% CI 2.7-6.8], longer time to discharge (mean 17 versus 7.1 days), and lower final SpO2 (92 versus 94%). Across all subgroups and propensity-matched analysis, MV was associated with a greater OR of death than NIV. CONCLUSIONS: NIV was associated with lower respiratory intervention mortality and morbidity than MV. However, findings may be liable to unmeasured confounding and further study from randomized controlled trials is needed to definitively determine the role of NIV in hypoxemic patients with COVID-19.


Subject(s)
COVID-19 , Noninvasive Ventilation , Cohort Studies , Humans , Respiration, Artificial , Retrospective Studies , SARS-CoV-2
15.
Obesity (Silver Spring) ; 29(9): 1547-1553, 2021 09.
Article in English | MEDLINE | ID: covidwho-1212774

ABSTRACT

OBJECTIVE: Obesity is associated with severe coronavirus disease 2019 (COVID-19) infection. Disease severity is associated with a higher COVID-19 antibody titer. The COVID-19 antibody titer response of patients with obesity versus patients without obesity was compared. METHODS: The data of individuals tested for COVID-19 serology at the Mount Sinai Health System in New York City between March 1, 2020, and December 14, 2021, were retrospectively retrieved. The primary outcome was peak antibody titer, assessed as a binary variable (1:2,880, which was the highest detected titer, versus lower than 1:2,880). In patients with a positive serology test, peak titer rates were compared between BMI groups (<18.5, 18.5 to 25, 25 to 30, 30 to 40, and ≥40 kg/m2 ). A multivariable logistic regression model was used to analyze the independent association between different BMI groups and peak titer. RESULTS: Overall, 39,342 individuals underwent serology testing and had BMI measurements. A positive serology test was present in 12,314 patients. Peak titer rates were associated with obesity (BMI < 18.5 [34.5%], 18.5 to 25 [29.2%], 25 to 30 [37.7%], 30 to 40 [44.7%], ≥40 [52.0%]; p < 0.001). In a multivariable analysis, severe obesity had the highest adjusted odds ratio for peak titer (95% CI: 2.1-3.0). CONCLUSION: COVID-19 neutralizing antibody titer is associated with obesity. This has implications on the understanding of the role of obesity in COVID-19 severity.


Subject(s)
Antibodies, Viral/blood , COVID-19 , Obesity , Antibodies, Neutralizing/blood , COVID-19/immunology , Humans , Logistic Models , Obesity/complications , Retrospective Studies
17.
PLoS One ; 16(3): e0247614, 2021.
Article in English | MEDLINE | ID: covidwho-1167062

ABSTRACT

Efficient contact tracing and testing are fundamental tools to contain the transmission of SARS-CoV-2. We used multi-agent simulations to estimate the daily testing capacity required to find and isolate a number of infected agents sufficient to break the chain of transmission of SARS-CoV-2, so decreasing the risk of new waves of infections. Depending on the non-pharmaceutical mitigation policies in place, the size of secondary infection clusters allowed or the percentage of asymptomatic and paucisymptomatic (i.e., subclinical) infections, we estimated that the daily testing capacity required to contain the disease varies between 0.7 and 9.1 tests per thousand agents in the population. However, we also found that if contact tracing and testing efficacy dropped below 60% (e.g. due to false negatives or reduced tracing capability), the number of new daily infections did not always decrease and could even increase exponentially, irrespective of the testing capacity. Under these conditions, we show that population-level information about geographical distribution and travel behaviour could inform sampling policies to aid a successful containment, while avoiding concerns about government-controlled mass surveillance.


Subject(s)
COVID-19 Testing/statistics & numerical data , COVID-19/diagnosis , COVID-19/epidemiology , Contact Tracing/statistics & numerical data , Models, Statistical , Policy , Quarantine/statistics & numerical data , COVID-19/prevention & control , Humans
18.
IEEE Trans Big Data ; 7(1): 38-44, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1153384

ABSTRACT

Traditional Machine Learning (ML) models have had limited success in predicting Coronoavirus-19 (COVID-19) outcomes using Electronic Health Record (EHR) data partially due to not effectively capturing the inter-connectivity patterns between various data modalities. In this work, we propose a novel framework that utilizes relational learning based on a heterogeneous graph model (HGM) for predicting mortality at different time windows in COVID-19 patients within the intensive care unit (ICU). We utilize the EHRs of one of the largest and most diverse patient populations across five hospitals in major health system in New York City. In our model, we use an LSTM for processing time varying patient data and apply our proposed relational learning strategy in the final output layer along with other static features. Here, we replace the traditional softmax layer with a Skip-Gram relational learning strategy to compare the similarity between a patient and outcome embedding representation. We demonstrate that the construction of a HGM can robustly learn the patterns classifying patient representations of outcomes through leveraging patterns within the embeddings of similar patients. Our experimental results show that our relational learning-based HGM model achieves higher area under the receiver operating characteristic curve (auROC) than both comparator models in all prediction time windows, with dramatic improvements to recall.

20.
Gastroenterology ; 160(7): 2435-2450.e34, 2021 06.
Article in English | MEDLINE | ID: covidwho-1116737

ABSTRACT

BACKGROUND & AIMS: Given that gastrointestinal (GI) symptoms are a prominent extrapulmonary manifestation of COVID-19, we investigated intestinal infection with SARS-CoV-2, its effect on pathogenesis, and clinical significance. METHODS: Human intestinal biopsy tissues were obtained from patients with COVID-19 (n = 19) and uninfected control individuals (n = 10) for microscopic examination, cytometry by time of flight analyses, and RNA sequencing. Additionally, disease severity and mortality were examined in patients with and without GI symptoms in 2 large, independent cohorts of hospitalized patients in the United States (N = 634) and Europe (N = 287) using multivariate logistic regressions. RESULTS: COVID-19 case patients and control individuals in the biopsy cohort were comparable for age, sex, rates of hospitalization, and relevant comorbid conditions. SARS-CoV-2 was detected in small intestinal epithelial cells by immunofluorescence staining or electron microscopy in 15 of 17 patients studied. High-dimensional analyses of GI tissues showed low levels of inflammation, including down-regulation of key inflammatory genes including IFNG, CXCL8, CXCL2, and IL1B and reduced frequencies of proinflammatory dendritic cells compared with control individuals. Consistent with these findings, we found a significant reduction in disease severity and mortality in patients presenting with GI symptoms that was independent of sex, age, and comorbid illnesses and despite similar nasopharyngeal SARS-CoV-2 viral loads. Furthermore, there was reduced levels of key inflammatory proteins in circulation in patients with GI symptoms. CONCLUSIONS: These data highlight the absence of a proinflammatory response in the GI tract despite detection of SARS-CoV-2. In parallel, reduced mortality in patients with COVID-19 presenting with GI symptoms was observed. A potential role of the GI tract in attenuating SARS-CoV-2-associated inflammation needs to be further examined.


Subject(s)
COVID-19/virology , Gastrointestinal Diseases/virology , Immunity, Mucosal , Intestinal Mucosa/virology , SARS-CoV-2/pathogenicity , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/immunology , COVID-19/mortality , Case-Control Studies , Cells, Cultured , Cytokines/blood , Female , Gastrointestinal Diseases/diagnosis , Gastrointestinal Diseases/immunology , Gastrointestinal Diseases/mortality , Host-Pathogen Interactions , Humans , Inflammation Mediators/blood , Intestinal Mucosa/immunology , Italy , Male , Middle Aged , New York City , Prognosis , Risk Assessment , Risk Factors , SARS-CoV-2/immunology , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL